Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With the decline of reef-building corals, other organisms are taking over Caribbean reefs, including sponges and benthic cyanobacterial mats (BCM). Sponges take up dissolved organic matter (DOM), but the sources and chemical characteristics of DOM taken up by sponges are unknown. One likely DOM source is benthic autotrophs, including BCM, which are prolific producers of DOM. We tested the hypothesis that sponges take up BCM-derived DOM using laboratory experiments in which seawater samples were collected before and after sequential incubations of BCM and small individuals of the giant barrel sponge Xestospongia muta. The concentration of DOC and relative abundance of individual features in the high resolution mass spectra using untargeted metabolomics were determined for each sample. There was a significant increase in DOC after BCM incubations, followed by a significant decrease after sponge incubations. These changes were mirrored in single feature relative abundances, with 2101 out of 3667 features significantly enriched during BCM incubations, and 54% of these (1142) depleted during sponge incubations. Among BCM-enriched and sponge-depleted features, many were halogenated, some were known BCM-derived secondary metabolites (e.g., carriebowmide, barbamide), and others matched unidentified sponge-depleted features from seawater samples collected on the reef. To our knowledge, this is the first report that sponges take up BCM exudates, including some that were detectable in reef DOM, revealing a path of molecules from source to sink through their environment. The BCM exudates taken up by sponges may be used as a food source or incorporated into sponge secondary metabolites for holobiont maintenance or chemical defenses.more » « lessFree, publicly-accessible full text available February 25, 2026
-
null (Ed.)Competition for limited space is an important driver of benthic community structure on coral reefs. Studies of coral-algae and coral-sponge interactions often show competitive dominance of algae and sponges over corals, but little is known about the outcomes when these groups compete in a multispecies context. Multispecies competition is increasingly common on Caribbean coral reefs as environmental degradation drives loss of reef-building corals and proliferation of alternative organisms such as algae and sponges. New methods are needed to understand multispecies competition, whose outcomes can differ widely from pairwise competition and range from coexistence to exclusion. In this study, we used 3D photogrammetry and image analyses to compare pairwise and multispecies competition on reefs in the US Virgin Islands. Sponges ( Desmapsamma anchorata, Aplysina cauliformis ) and macroalgae ( Lobophora variegata ) were attached to coral ( Porites astreoides ) and arranged to simulate multispecies (coral-sponge-algae) and pairwise (coral-sponge, coral-algae) competition. Photogrammetric 3D models were produced to measure surface area change of coral and sponges, and photographs were analyzed to measure sponge-coral, algae-coral, and algae-sponge overgrowth. Coral lost more surface area and was overgrown more rapidly by the sponge D. anchorata in multispecies treatments, when the sponge was also in contact with algae. Algae contact may confer a competitive advantage to the sponge D. anchorata, but not to A. cauliformis , underscoring the species-specificity of these interactions. This first application of photogrammetry to study competition showed meaningful losses of living coral that, combined with significant overgrowths by competitors detected from image analyses, exposed a novel outcome of multispecies competition.more » « less
An official website of the United States government
